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Abstract. Corrections to scaling at the critical dimension have been calculated from the d3 
field theory. Numerical calculations based upon series expansions for the mean cluster 
size in percolation theory are shown to be consistent with an asymptotic behaviour of the 
type found for the susceptibility in the n = 0 limit of the b3  model. 

1. Introduction 

The Potts model may be defined as a classical spin model in which the n-component 
spin vectors si  of magnitude s at each lattice site take on values corresponding to the 
n + 1 corners of a hypertetrahedron (Zia and Wallace 1975). The interaction between 
spin pairs is via the scalar product of the spin vectors and n = 1 corresponds to the 
king interaction. 

Kasteleyn and Fortuin (1969) showed that the properties of a bond percolation 
model may be obtained from the thermodynamic functions of a Potts model with 
s2 = n in the limit n + 0. For example the initial susceptibility ,yo gives the mean size of 
clusters S, the spontaneous magnetisation MO gives the percolation probability P and 
the pair-correlation function Gij gives the pair-connectedness function Plj between 
lattice sites i and j .  

Harris et al (1975) argued that the critical dimension d, for the Potts model is six 
on the basis that when d = 6 the hyperscaling relation dv = 26 + y is satisfied by the 
mean field exponents, = 1, y = 1, Y = t .  (This result is a generalisation of a previous 
suggestion of Toulouse (1974) for the percolation problem.) They also used renor- 
malisation group (RG) methods to obtain the first-order term in an expansion of the 
exponents in powers of E = 6 - d and this was later extended to second order by Priest 
and Lubensky (1976)T and Amit (1976). To first order the results of these calculations 

3: Permanent address: Department of Mathematics, University of Newcastle, Newcastle NSW 2308, 
Australia. 

The second-order terms in this paper have since been revised in agreement with Amit (1976 Phys. Rev. B 
14 5 125). 

0305-4770/78/0010-1983$01.00 @ 1978 The Institute of Physics 1983 



1984 J W Essam, D S Gaunt and A J Guttmann 

may be written 

l - n  
7-3n 

Y ( E ) =  1 +- E + O(E2), 

E 
/ 3 ( E ) =  1-- + O(E2), 7-3n 

1 5 l - n  
2 127-3n 

v ( E ) = - + - -  E +O(E2), 

2 - n  
7-3n 

8 ( E )  = 2 +- E + O(E2). 

The above results were calculated for a d 3  field theory and are not necessarily 
correct for the true Potts model interaction. The partition function for the Potts model 
may be written exactly as (Zia and Wallace 1975). 

where the sum is over all lattice sites Y and the average over the internal fields bi is 
calculated with a Gaussian weight function which includes the pair interaction. The 
‘on-site’ interaction V is given by 

V(4, ,  Li)= ln(exp[(4i + L l )  - s I ] ) o  (1.3) 

where the average gives equal weight to all n + 1 states. Expansion of In Z in powers 
of the external fields L, yields the spin correlation functions. The (b3 field theory is 
obtained by expanding V in powers of 4 and discarding all terms involving more than 
three fields. Amit el a1 (1977) have shown that although the d4 interaction makes the 
Gaussian fixed point unstable when d < 4, i t  is irrelevant in respect of the stability of 
the 4 3  fixed point to order E .  Houghton er a1 (1978) have shown that for n > 1 the E 

expansion is not PadC-Bore1 summable since the coefficients, which increase 
factorially, all have the same sign. For n = 1 the 4 3  interaction vanishes from the 
Hamiltonian and for n < 1 the E expansion has alternating signs and is PadC-Bore1 
summable. These results lead one to believe that the 4 3  theory should lead to critical 
behaviour which is the same as for the percolation model (n = 0). 

In this paper comparison is made between results obtained from exact low-density 
series expansions for the percolation model and RG results for the 4 3  field theory. We 
work at d = 6 where the exponents associated with the logarithmic corrections to 
mean field theory for the d 3  model may be calculated exactly by RG methods. Our 
results for the percolation model are restricted to the low-density mean size where the 
exponent obtained compares very favourably with the RG result. 

Rudnick and Nelson (1976) have shown that for the 44 field theory near d = 4 the 
corrections to scaling for the susceptibility may be written 

where A and B are non-universal constants but 41, 8, and y are universal*. A,  is 

t y ( ~ )  is as defined in (1.1) for all E .  For convenience in the case E < 0, we have relaxed the convention that y 
is the exponent of the dominant singularity. 
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determined from the correction to scaling since for E > 0 

(1.5) + a t - Y ( f ) + f A ,  x - t P d )  

Thus A I  = by comparing (1.5) with (8.6) of BrCzin et a1 (1976). The form (1.4) has 
the merit that i t  describes the crossover to classical behaviour for E < O .  The 
requirement that x - t - 1  for E < 0 yields the result 

ev = ~ ' ( o ) / A ~  = 2yyo). (1.6) 

Now letting E + 0 

x - t-'/ln tie,. (1.7) 

Professor A B Harris (private communication) has extended the calculation of Rud- 
nick and Nelson to the d3  model and verified the form (1.4). Together with Fisch 
(Harris and Fisch 1977) he has tested the form by exact series expansion methods for 
the random resistor network n = - 1 (Fortuin and Kasteleyn 1972) where the result 
(1.6) is also stated. 

Our result for the 43 model when n + 0, obtained by solving the Callan-Symanzik 
equation with d = 6, is Bv = 5, whereas from the series expansion for the percolation 
model we obtain 8, = 0-28 f 0.07. The correlation length, critical isotherm, spon- 
taneous magnetisation and susceptibility below T, for the 43 model are also found to 
have logarithmic factors consistent with (1.6) together with (1.1) The result A I  =: is 
found also for this model by combining the results of Amit (1976) with those of BrCzin 
et ag (1976). 

2. Renormalisation group calculation 

2.1. H = O , T + T Z  

We take as our starting point the Callan-Symanzik equation (BrCzin et a1 1976, 
equation (6.4 0)): 

where r (N)  is the renormalised N-point vertex function, t = ( T -  T,)/T,, g is a renor- 
malised third-order interaction parameter and p is an arbitrary momentum scale 
parameter. The functions W, 77 and v have been found for the ~ 7 5 ~  model to second 
order in E by Amit (1976) and setting E = 0 in his results 

where 

w = ; ( U  + 1)'(7-3n) and x = ?(n + l)'(n - 1). (2.3) 

The calculation follows that of Br6zin et a1 (1976) for the 44 model (see 9: VII1.B). 
Logarithmic corrections to scaling in six dimensions arise from the fact that g = 0 at 
the fixed point and it is the approach to zero of the functions (2.2) which determines 
the exponents. 
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Integration of (2.1) using an arbitrary scale parameter A gives 

(2.4) I N  ( N )  r ( N ) ( p i ;  t, g ,  p ) = i ( A ) 2  ( P i ;  t ( A ) ,  g ( A ) , A p )  

where g ( A )  is given by 

and i ( A )  and t ( A )  are determined in terms of g ( A )  by 

K(A) d g ' )  
g W ( g ' >  

i ( A )  = exp ( - - dg') = constant(g(A))-"""[ 1 + O ( g 2 ( A ) ) ]  

(2.6) 
and 

t (A)=texp [ - JKg(A) - wig,) -- 2)dg'] =constant t(g(A))-"/"[l + O ( g ' ( A ) ) ]  (2.7) 

where the constants are parameters depending on g and are positive. Dimensional 
arguments applied to (2.4) give 

where D = 6 - 2N. 
We shall be considering p i  = 0 and on the left-hand side we require t to be small, 

but on the right-hand side we require the temperature argument to remain finite and 
g ( A )  to become small as t + 0 so that perturbation theory may be used to evaluate r(N). 
Therefore choose A so that 

r ( A ) = ( A d '  (2.9) 

t =constant ( A ~ ) ' ( R ( A ) ) ~ ' ~ [ ~  + O ( g ' ( A ) ) ] .  (2.10) 

and combining this with (2.7) gives 

Equation (2.10) together with (2.5) shows that as A -0 both t and g ( A ) + O  as 
required. Substituting (2.6) and (2.10) into (2.8) we obtain 

r(N)(o; t, g ,  p ) =  ~ o n s t a n t ( g ( A ) ) - " ~ ~ - ~ ~ ~ ' " t ~ - ~ ~ ~ ~ ) ( O ;  1, g ( A ) ,  i)[i + O ( ~ ' ( A ) ) ] .  (2.11) 

In leading order perturbation 

N 2 2  3 - N  N - 2  r")(pi = 0)-  t , (2.12) 

and using this in the right-hand side of (2.11) together with (2.5), (2.9) and (2.10), 

PN)(o;  t, g, p ) - t 3 - N ( ~ l l n  tl)l 

Since xi' = T(*'(p = 0) we find 

(2.13) 

(2.14) 

where 6, = -$x /w .  For the percolation problem n = 0 and hence 8, = f .  From (2.10) 
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and (2.5) it follows that the correlation length has the form 

1987 

(2.15) 

where 8, = - x/4w which for n = 0 gives 8, = A. 

2.2 Equation of state 

So far we have considered the zero field t > 0, region. To obtain the equation of state 
we start from equation (7.4) of BrCzin et a1 (1976) 

(2.16) 

where M is the magnetisation and H the magnetic field. Integrating this equation and 
using dimensional arguments, the equation corresponding to equation (7.8) of BrCzin 
et a1 (1 976) is 

where (2.5), (2.6) and (2.7) are still valid with A replaced by A ’  and M(A’) is given by 

(2.18) 

In order to use perturbation theory we require the magnetisation argument on the 
right-hand side of (2.17) to remain finite as M +  0. Choosing A ‘  so that 

M (A ’1 = ~ - 2  (A ‘1’ 12. 

M(A ’) = (A ’ p  )’ (2.19) 

and using (2.18) and (2.6) we get 

M = constant ( A ‘ C L ) ~ ( ~ ( A ‘ ) ) ~ ’ ’ ~ ~ [ I  +O(g2(A’))]. (2.20) 

Hence as A ’ +  0, M + 0 so that this limit will give the critical behaviour. Substituting 
(2.19), (2.6) and (2.7) into (2.17) gives 

H(M,  t ,  g, g )  = constant M2(g(A ’))-3x’10w~l, constant -(g(A’))-9x’10w t 
M 

X +O(g2(A’))l, g(A’>, 1)[1 +O(g2(A’))1. (2.21) 

Provided M is of order It1 we can use perturbation theory to evaluate the right-hand 
side of (2.21) and obtain, using (2.5) and (2.20), 

H(M,  t, g, g)= [cltM(wlln ~ 1 ) ~ ~ / ~ ~  + c 2 ~ ’ ( w l l n  ~ 1 ) ( ~ ~ / ~ ~ ~ ) - *  I[ 1 + O(&)l 
(2.22) 

where cJ and c2 are positive constants. Along the critical isotherm ( t  = 0) 

(2.23) 
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where 6 6  = 4- (3x/20w) or 66 = !$ for n = 0.  The spontaneous magnetisation is given by 

(2.24) 

2 where = -&(9x/20w) or = - 7  for n = O .  
Finally the zero field susceptibility for t + 0- is obtained by differentiating (2.22): 

x o  =- 
- l  aM 7 H = O  

and using (2.24) 

(2.26) 

where By. = 8,. Notice that both terms in (2.25) have the same value of 8,) and we have 
assumed that the second term is of larger magnitude than the first in order to get a 
positive susceptibility. 

3. Series analysis 

In this section we analyse the mean size series s ( p )  at the critical dimension (d  = d, = 
6) for a dominant singular structure of the form 

using a method of analysis recently devised by Guttmann (1978). The assumed 
asymptotic form (3.1) is of the same general type as we obtained in B 2 for the 
susceptibility of the d3 field theory. The mean size series S ( p )  for the bond problem 
on a general d-dimensional hypercubic lattice have recently been obtained by Gaunt 
and Ruskin (1978) through order p 9 .  In the definition of s ( p ) ,  the  size of a bond 
cluster is determined by the number of bonds it contains and not by the number of 
sites as i t  is in S ( p )  used by Kasteleyn and Fortuin. It has been shown (Essam er a1 
1976) that z s ( p ) S  S ( p ) a f S ( p ) ,  where z is the lattice coordination number, from 
which it follows that the precise definition used does not affect the value of p c  or the 
nature of the singularity, that is S ( p ) - s ( p ) .  

For d = 6 the critical probability was estimated to be (Gaunt and Ruskin 1978) 
p ,  = 0.0941 ~t 0.0005. (This estimate was obtained both from exact series analysis and 
from a presumably asymptotic expansion for p c  in inverse powers of (+ = 2d - 1.) 
Writing the mean size as S ( p ) =  Z,, ,d,p", the series is now transformed using the 
transformation U = 2p/(l + p / p c )  to remove the effect of a probable singularity at or 
close to p = - p c .  The transformed series is written Xn,,,anun, where U,= p ,  is a fixed 
point of the transformation. Defining the function f(u) by 

(3.2) 
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the method of analysis consists of extrapolating the quantity R, = (a,/an-l)/(b,/b,-l)  
against l / n ,  and against c l / n + c 2 / n 2  for a range of values of 8. As explained by 
Guttmann (1978), if correction terms to the assumed asymptotic form of s(p) can be 
neglected, the elements of the sequence {R,} should remain constant and equal to 
l / pc  at the correct value of 8. Unfortunately correction terms cannot in general be 
neglected, and in such cases the criteria for the selection of the optimal value of 8 are 
firstly convergence of the linear and quadratic extrapolants defined by S ,  = 
nR, - ( n  - l)R,-l, T, = - [nS ,  - ( n  -2)S,-1] respectively, to the assumed value of 
l /pc,  and secondly that exponent estimates and their linear extrapolants, defined by 
s, = n(R,pc- 1) and r, = ns, - (n  - l ) ~ , - ~ ,  respectively, should approach zero. 

Our results for three values of 8 are shown in table 1. For 8 = 0.20, the sequence 
{R,} is increasing towards l /pc,  while the quadratic extrapolants are decreasing, and 
are already below l /pc.  Exponent estimates and their linear extrapolants are 
approaching zero from below and above, respectively. For 8 = 0.25, exactly the same 
qualitative behaviour is observed. However the quadratic extrapolants are closer to 
their expected limit point l /pc,  while the linear extrapolants of the exponent estimates 
are very close indeed to zero. Thus 8 = 0.25 is favoured over 8 = 0.20. For 8 = 0.30 
the sequence {Tn} is still closer to its limit point l /pc,  but the exponent estimates are 
further away from zero. This value of 8 is therefore equally acceptable as 8 = 0.25. 
For 8 = 0.35 (not shown in table 1) all sequences are further away from their expected 
limit points. From this analysis alone we could conclude that 0.25 s 8, s 0.30. 
However to allow for the uncertainty in the value of pc ,  we widen our confidence limits 
and write 8, = 0 .281  0.07. This is in excellent agreement with the RG result 8, = 3 = 
0.2857. . . , obtained in li 2 for the n = 0 limit of the 43 field theory and reinforces our 
belief in its applicability to the bond percolation problem. 

1 

Table 1. Analysis of transformed mean size series for the d = 6 bond percolation problem. 
assuming p,' = 10.627. 

Quadratic Exponent Linear 
extrapolants estimates extrapolants 

e n R, T" s,=n(R,p,-l)  r,=ns,-(n-l)s,-, 

4 10.5697 10.6871 -0,0216 0,0103 
5 103960 10.6431 -0.0146 0.0133 
6 10.6095 10.6296 --0.0099 0.0138 

o'20 7 10.6171 10,6252 -0.0065 0.0134 
8 10.6215 10.6237 -0.004 1 0.0128 
9 10.6243 10.6232 -0,0023 0,0121 

4 10,5222 10.6957 -0.0394 -0.00464 
-0.03 17 -0.00058 5 10,5597 10.6486 

6 10.5804 10.6334 -0.0263 0,00063 0'25 7 10.5930 10.6281 -0.0224 0.00084 
8 10.6011 10.6260 -0.0 195 0.00065 
9 10.6065 10.6250 -0.0173 0,00028 

4 10.4747 10.7046 -0.0573 -0.0198 
5 10,5233 10.6543 -0.0488 -0.0147 
6 10,5512 10.6375 -0.0428 -0.0127 

0'30 7 10.5687 10.6311 -0,0384 -0.01 19 
8 10,5805 10.6284 -0.0350 -0.0117 
9 10.5887 10.6269 -0.0324 -0.01 17 
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The series for the site percolation problem (Gaunt et a1 1976) are not so smooth 
and are one term shorter. Consequently the numerical evidence for site percolation is 
less convincing but is not inconsistent with the same value of 8,. At the present time 
there is no RG result for 0, for the site percolation problem. 
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